∵BC是直径,∴AB⊥AC,∴∠ABF+∠FBC+∠ACB=90°.
∵弧AB=弧AF,∴∠ABF=∠ACB, ∴2∠ACB+∠FBC=90°, 又∠FBC=α,
∴2∠ACB+α=90°, ∴∠ACB=45°-α/2.
∵AB⊥AC、AD⊥BC,∴∠BAE=∠ACB.[同是∠ABC的余角]
由∠BAE=∠ACB,得:∠BAE=∠ABF,∴BE=AE.
∵BC是直径,∴AB⊥AC,∴∠ABF+∠FBC+∠ACB=90°.
∵弧AB=弧AF,∴∠ABF=∠ACB, ∴2∠ACB+∠FBC=90°, 又∠FBC=α,
∴2∠ACB+α=90°, ∴∠ACB=45°-α/2.
∵AB⊥AC、AD⊥BC,∴∠BAE=∠ACB.[同是∠ABC的余角]
由∠BAE=∠ACB,得:∠BAE=∠ABF,∴BE=AE.