1)当q=1时,a(n+1) -an =pn+m
an- a(n-1) =p(n-1) +m
.
.
a2-a1= p+m
an -a1 =pn(n-1)/2 +m(n-1)
an =1+pn(n-1)/2 +m(n-1)
2) 当q≠1时
设 a(n+1)+x(n+1)+y=q[an +xn +y] 等比数列
展开,比较系数,得
x=p/(q-1),y=(p+mq-m)/(q-1)²
数列 an+xn+y =(1+x+y)*q^(n-1)=[1+(pq+mq-m)/(q-1)²]*q^(n-1)