(2004•黄浦区一模)limn→∞(1+2+…+nn+2−n2)−12−12.
1个回答
lim
n→∞(
1+2+…+n
n+2−
n
2)=
lim
n→∞ (
n(1+n)
2
n+2−
n
2)
=
lim
n→∞
−n
2(n+2)=−
1
2
故答案为:−
1
2
相关问题
(2009•黄浦区一模)若f(n)=1+2+3+…+n(n∈N*),则limn→+∞f(n2)[f(n)]2=_____
(2010•上海模拟)计算:limn→∞(1n2+1+2n2+1+…+nn2+1)=[1/2][1/2].
(2005•浙江)limn→∞[1+2+3+…+nn2=( )
有一列数−12,25,−310,417,…那么第n个数为(−1)n•nn2+1(−1)n•nn2+1.
(2012•黄浦区二模)已知数列{an}(n∈N*)是公差为2的等差数列,则limn→∞an2n−1=______.
已知数列{an}满足:an-an-1=(-a12)•(-12)n-2(n∈N*,n≥2).若limn→∞an=1,则a1
(2010•青浦区一模)limn→∞3n+1−2n3n+2n+1=______.
(2012•崇明县一模)计算limn→∞(2n2+[5n2
(2014•虹口区二模)limn→∞−n2+n−32n2−n=-[1/2]-[1/2].
(2010•闸北区一模)limn→∞1+3+5+…+(2n-1)C2n=______.