解题思路:(1)假设存在买票钱数相等的状况,即:人数在51~100人之间时的人数×相应的票价=人数在100人以上时的人数×相应的票价,如果有满足等量关系的量,则成立,反之,不成立.
(2)由于两班作为一个团体购票,票的单价都相同,所以用买票钱数÷票的单价,通过整除后的结果就可判断出人数,由于票的单价不确定,所以要分团体人数在51~100人和100人以上两种情况分别讨论.
(3)等量关系为:购票人数×相应的票价=买票钱数.
(4)他们还可以通过和(2)班的部分同学共同购买51~100人的11元单价票.
(1)设初一(1)班有x人,初一(2)班有y人.
假设存在买票钱数相等的状况.
就是满足11x=9y,
∵x<100,y>100的符合题意的正整数解,
答:各为90人与110人,99人与121人.
(2)我们可以用11或9去除909,能整除哪个就是正确的总人数.
909÷9=101,
答:显然超过100人.
(3)设初一(1)班有x人,初一(2)班有y人.
根据题意得
x+y=101
13x+11y=1207,
解得
x=48
y=53.
答:初一(1)班有48人,初一(2)班有53人.
(4)他们可以买51人的票,省48×13-51×11=63(元)
点评:
本题考点: 二元一次方程组的应用.
考点点评: 解题关键是弄清题意,分别要区分不同的人数相对应的不同的票价,然后找出合适的等量关系.