取 BC 中点 F
连接 MF NF
MF || DC,MF = DC/2 = AC/4
NF || EB,NF = EB/2 = AB/4
∠MFB = ∠C,∠NFC = ∠B
∠MFB + ∠NFC + ∠MFN = 180
∠C + ∠B + ∠A = 180
所以 ∠MFN = ∠A
因此 △MFN∽△CAB
MN/BC = NF/AB = MF/AC = 1/4
MN = BC/4 = 1.2 cm
取 BC 中点 F
连接 MF NF
MF || DC,MF = DC/2 = AC/4
NF || EB,NF = EB/2 = AB/4
∠MFB = ∠C,∠NFC = ∠B
∠MFB + ∠NFC + ∠MFN = 180
∠C + ∠B + ∠A = 180
所以 ∠MFN = ∠A
因此 △MFN∽△CAB
MN/BC = NF/AB = MF/AC = 1/4
MN = BC/4 = 1.2 cm