这是一道高考题目的压轴题
大哥啊,我这可是卷子上的标准答案啊!
一
由于f(2-x)= f(2+x),f(7-x)= f(7+x)
可知f(x)的对称轴为x=2和x=7,
即f(x)不是奇函数.
联立
f(2-x)= f(2+x)
f(7-x)= f(7+x)
推得f(4-x)= f(14-x)= f(x)
即f(x)=f(x+10),T=10
又 f(1)= f(3)=0 ,而f(7)≠0
故函数为非奇非偶函数.
(Ⅱ)f(x)=f(x+10),T=10
由f(4-x)= f(14-x)= f(x)
且闭区间[0,7]上只有f(1)= f(3)=0
得f(11)= f(13)=f(-7)= f(-9)= 0
即在[-10,0]和[0,10]函数各有两个解
则方程f(x)=0在闭区间[0,2005]上的根为402个,方程f(x)=0在闭区间[-2005,0]上的根为400个
得方程f(x)=0在闭区间[-2005,2005]上的根的个数为802个