f(xy)=f(x)+f(y)
令y=1得f(x) = f(x) + f(1)
∴f(1) = 0
令x=y=2得f(4) = f(2)+f(2) = 2
f(x) + f(x+3) ≤ 2
f[x(x+3)] ≤ f(4)
f(x)在(0,+∞)上有意义,且单调递增
∴x>0,x+3>0,x(x+3) ≤4
解得 0 < x ≤ 1
f(xy)=f(x)+f(y)
令y=1得f(x) = f(x) + f(1)
∴f(1) = 0
令x=y=2得f(4) = f(2)+f(2) = 2
f(x) + f(x+3) ≤ 2
f[x(x+3)] ≤ f(4)
f(x)在(0,+∞)上有意义,且单调递增
∴x>0,x+3>0,x(x+3) ≤4
解得 0 < x ≤ 1