f(x1)-f(x2)=[√(1+x1²)-√(1+x2²)]-(x1-x2)
=(1+x1²-1-x2²)/[√(1+x1²)+√(1+x2²)]-(x1-x2)
=(x1-x2)(x1+x2)/[√(1+x1²)+√(1+x2²)]-(x1-x2)
=(x1-x2)[x1+x2-√(1+x1²)-√(1-x2²)]/[√(1+x1²)+√(1+x2²)]
∵x1|x2|
∴x1-√(1+x1²)
f(x1)-f(x2)=[√(1+x1²)-√(1+x2²)]-(x1-x2)
=(1+x1²-1-x2²)/[√(1+x1²)+√(1+x2²)]-(x1-x2)
=(x1-x2)(x1+x2)/[√(1+x1²)+√(1+x2²)]-(x1-x2)
=(x1-x2)[x1+x2-√(1+x1²)-√(1-x2²)]/[√(1+x1²)+√(1+x2²)]
∵x1|x2|
∴x1-√(1+x1²)