1、已知函数f(x)=-2x平方+3tx+t(t∈R),(1)求f(x)的最大值u(t),(2)求u(t)的最小值
解析:∵函数f(x)=-2x^2+3tx+t=-2(x-3t/4) ^2+(9t^2+8t)/8
∴函数f(x)在x=3t/4时,取最大值(9t^2+8t)/8
令u(t)= (9t^2+8t)/8=9/8(t^2+8t/9) =9/8(t+4/9)^2-2/9
∴函数u(t) 在t=-4/9时,取最小值-2/9
2、设f(x)=x平方-4x-4(x∈[t,t+1],t∈R),求函数f(x)的最小值g(t)的解析式
解析:∵f(x)=x^2-4x-4=(x-2)^2-8 (x∈[t,t+1],t∈R)
当t>=2时,在区间[t,t+1]上f(x)单调增,其最小值为g(t)=f(t)= (t-2)^2-8;
当-1