就是把x-y和y-z看成一个整体,然后柯西不等式就好了 (a+b)/2≥2/(1/a+1/b)
[(x-y)+(y-z)]/2≥2/[1/(x-y)+1/(y-z)]
所以1/(x-y)+1/(y-z)≥4/[(x-y)+(y-z)]=4/(x-z)
所以n≤4,即n的最大值为4
就是把x-y和y-z看成一个整体,然后柯西不等式就好了 (a+b)/2≥2/(1/a+1/b)
[(x-y)+(y-z)]/2≥2/[1/(x-y)+1/(y-z)]
所以1/(x-y)+1/(y-z)≥4/[(x-y)+(y-z)]=4/(x-z)
所以n≤4,即n的最大值为4