解题思路:先判断函数f(x),g(x)在R上的单调性,再利用f(a)=0,g(b)=0判断a,b的取值范围,即可得到正确答案.
∵y=ex和y=x-2是关于x的单调递增函数,
∴函数f(x)=ex+x-2在R上单调递增,
分别作出y=ex,y=2-x的图象如右图所示,
∴f(0)=1+0-2<0,f(1)=e-1>0,
又∵f(a)=0,
∴0<a<1,
同理,g(x)=lnx+x2-3在R+上单调递增,g(1)=ln1+1-3=-2<0,g(
3)=ln
3+(
3)2-3=[1/2ln3>0,
又∵g(b)=0,
∴1<b<
3],
∴g(a)=lna+a2-3<g(1)=ln1+1-3=-2<0,
f(b)=eb+b-2>f(1)=e+1-2=e-1>0,
∴g(a)<0<f(b).
故选:D.
点评:
本题考点: 函数单调性的性质.
考点点评: 本题考查了函数的性质,考查了函数图象.熟练掌握函数的单调性、函数零点的判定定理是解题的关键.本题运用了数形结合的数学思想方法.属于中档题.