∫1/√x广义积分(1,0)∫(1/√x)dx广义积分(1,0),
1个回答
∫[0→1] 1/√x dx
=2√x |[0→1]
=2
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
相关问题
广义积分 ∫(0-1) √ x/ √(1-x)dx
计算广义积分∫[0,1]ln[1/(1-x²)]dx
广义积分∫ln(1-x^2)dx(0到1)
广义积分∫(0~+∞)dx/1+x^2 dx 怎么求?
广义积分∫(0→1)x^2(lnx)^2dx=
求广义积分∫1/x²(x+1)dx 积分区间为【1,
求广义积分∫∞ 1/xln x dx
广义积分∫+∞1xe-x2dx=( )
如何求广义积分∫1/x^2*dx,(1,+∞)
设广义积分∫[1,2]dx/(x-1)^q (q>0),问当q为何值时,该广义积分收敛?当q为何值时,该广义积分发散?