|z|=√[(-1+cosθ)^2+(2+sinθ)^2]
=√[(1-2cosθ+(cosθ)^2)+(4+4sinθ+(sinθ)^2)]
=√(6+4sinθ-2cosθ)
=√[6+√20*(4/√20*sinθ-2/√20*cosθ)]
=√[6+2√5*(2/√5*sinθ-1/√5*cosθ)]
令cosα=2/√5,sinα=1/√5
则原式=√[6+2√5*(sinθcosα-cosθsinα)]
=√[6+2√5*sin(θ-α)]
因为-1
|z|=√[(-1+cosθ)^2+(2+sinθ)^2]
=√[(1-2cosθ+(cosθ)^2)+(4+4sinθ+(sinθ)^2)]
=√(6+4sinθ-2cosθ)
=√[6+√20*(4/√20*sinθ-2/√20*cosθ)]
=√[6+2√5*(2/√5*sinθ-1/√5*cosθ)]
令cosα=2/√5,sinα=1/√5
则原式=√[6+2√5*(sinθcosα-cosθsinα)]
=√[6+2√5*sin(θ-α)]
因为-1