根据二项分布定义P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n,k) = n!/(k!* (n-k)!可得
P{X=1}=C(n,1)*p^1 *(1-p)^(n-1)=n*0.8*0.2^(n-1)
P{X=2}=C(n,2)*p^2*(1-p)^(n-2)=n(n-1)/2 *0.8^2 *0.2^(n-2)
n*0.8*0.2^(n-1)=n(n-1)/2 *0.8^2*0.2^(n-2)
0.2^(n-1)=(n-1) *0.4 *0.2^(n-2)=(n-1) *2*0.2^(n-1)
2(n-1)=1
n=3/2 问题有误?