解题思路:(1)根据A与C关于直线MN对称得到AC⊥MN,进一步得到∠COM=90°,从而得到在矩形ABCD中∠COM=∠B,最后证得△COM∽△CBA;
(2)利用上题证得的相似三角形的对应边成比例得到比例式后即可求得OM的长.
(1)证明:∵沿直线MN对折,使A、C重合
∴A与C关于直线MN对称,
∴AC⊥MN,
∴∠COM=90°.
在矩形ABCD中,∠B=90°,
∴∠COM=∠B,
又∵∠ACB=∠ACB,
∴△COM∽△CBA;
(2)∵在Rt△CBA中,AB=6,BC=8,
∴AC=10,
∴OC=5,
∵△COM∽△CBA,
∴[OC/BC=
OM
AB],
∴OM=[15/4].
点评:
本题考点: 相似三角形的判定与性质;勾股定理;矩形的性质.
考点点评: 本题考查了相似三角形的判定与性质、勾股定理及矩形的性质,解题的关键是仔细分析并找到相等的角来证得相似三角形.