令G(x)=[f(x)-f(a)][g(b)-g(x)],然后对G用罗尔定理
中值定理应用设f(x),g(x)在[a,b]上连续,(a,b)上可导,g(x)不为0,证明:则存在ξ∈(a,b),使[f
1个回答
相关问题
-
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一点ξ∈(a,b).
-
一道用中值定理证明的证明题.设f(x)在[a,b]上连续,在(a,b)内可导,f(a)=f(b)=1,证明:存在ξ,η∈
-
设f(x) g(x)在[a,b]连续, 证至少存在一点ξ∈(a,b), 使f(ξ)∫[b,ξ] g(x)dx=g(ξ)∫
-
设函数f(x)在[a,b]上连续,在(a,b)内可导,f(a)=0,证明:对于正整数n,存在ξ属于(a,b),使f(ξ)
-
设f(x)可导,且f(a)=f(b) 证明存在ξ∈ (a,b) 使f(a)-f(ξ )=ξ f'(x)
-
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,g(x)
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:存在ξ∈(a,b)使得f'(ξ)+f'
-
定积分证明设f(x)在〔a,b〕上连续,证明必存在ξ∈(a,b)使得(ξ-b)f(ξ)+∮(a,ξ)f(x)dx=0
-
设函数f(x)和g(x)在区间[a,b]上连续,且g(x)≠0,x∈[a,b],证明:至少存在一点ξ∈(a,b),使得:
-
设f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ,使得f(ξ)−f(a)b−ξ=f′(ξ