1、作BC中点O,连接AO,有BO=CO,设P在OC上,有BP=BO+OP,CP=CO-OP=BO-OP,则BP*CP=BO^2-OP^2,而AB^2=AO^2+BO^2,则16=AB^2=(AO^2+OP^2)+(BO^2-OP^2)=AP^2+BP*CP.
2、由P的任意性知:Mi=16,答案=1600
1、作BC中点O,连接AO,有BO=CO,设P在OC上,有BP=BO+OP,CP=CO-OP=BO-OP,则BP*CP=BO^2-OP^2,而AB^2=AO^2+BO^2,则16=AB^2=(AO^2+OP^2)+(BO^2-OP^2)=AP^2+BP*CP.
2、由P的任意性知:Mi=16,答案=1600