若等差数列an bn的前n项和An Bn满足An/Bn=(7n+1)/(4n+27),求a9/b13
1个回答
设An=(7n+1)nt(t≠0),则Bn=(4n+27)nt,
求得:an=14nt-6t,bn=8nt+23t,
所以a9=120t,b13=127t,即a9/b13=120/127
相关问题
等差数列{an} {bn}前n项和为An Bn,An/Bn=(7n+2)/(4n+27),求an/bn
等差数列{an} {bn}前n项和为An Bn,An/Bn=(7n+2)/(4n+27),求an/bn
若两个等差数列{an},{bn}的前n 项和分别为An和Bn,且满足An/Bn=(7n+1)/(4n+27),则a11/
等差数列{an},{bn}的前n项和分别为An,Bn,An/Bn=7n+1/4n+27,a5/b5等于多少
等差数列前n项和问题等差数列{an}{bn}前n项和分别为An和Bn.如果An/Bn=(7n+4)/(n-3)那么a9/
已知等差数列{an}和{bn}的前n项和分别为An和Bn,且满足An/Bn=(7n+1)/(4n+27),n属于正整数,
已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且An/Bn=(7n+1)/(4n+27),则an/bn=
等差数列an`bn`的前n项和分别为Sn`Tn.若Sn/Tn=(7n+1)/(4n+27),求an/bn
若两个等差数列{an}{bn}的前n项和分别为An、Bn,且满足An/Bn=(4n+2)/(5n-5)(,则a5+a13
设等差数列{an}的前n项和为Sn,等差数列{bn}的前n项和为Tn,若Tn\Sn=4n+27\7n+1,求bn\an