连接OD,OE.
1,∠ADC=∠ADO+∠ODC ∠OED=∠ODC+∠CDE
∠ADC=∠OED=90 ∠ADO=∠CDE
OD=OA ∠A=∠ADO
∠A=∠CDE
2,E为CB中点,OE为三角形ABC中位线
OE//AB ∠COE=∠A ∠DOE=∠ODA
∠COE=∠DOE OD=OC,OE=OE
△COE≌△DOE ∠OCE=∠OED=90
BC是O的切线
3,CD^2=AC^2-AD^2
CD=√5 CB^2=CD^2+BD^2=5+BD^2
CB^2=AB^2-AC^2
5+BD^2=(AD+BD)^2-9
BD=5/2