(x^3-x+1)sin^2x的不定积分

3个回答

  • 3次分部积分法解 用!代表积分号

    =!(x^3-x+1)(1-cos2x)/2dx

    =(x^3-x+1)(x/2-sin2x/4)-!(3x^2-1)(x/2-sin2x/4)dx+c

    = -!(3x^2-1)(x/2)dx +!(3x^2-1)(sin2x)/4)dx+c

    = -!(3/2)x^3-x/2 dx +!(3x^2-1)(sin2x)/4)dx+c

    = -(3/8)x^4+(x^2)/4 +(-(3x^2-1)(cos2x)/8+!(6x)(cos2x)/8dx)+c

    = -(3x^2-1)(cos2x)/8+!(6x)(cos2x)/8dx+c

    = +(6xsin2x)/16-!6sin2x/16dx +c

    = +(3/16)cos2x+c

    =(x^3-x+1)(x/2-sin2x/4)-(3/8)x^4+(x^2)/4 -(3x^2-1)(cos2x)/8 +(6xsin2x)/16+(3/16)cos2x+c