证明:
∵∠BAC=∠1+∠2,∠1=∠2
∴∠1=∠BAC/2
∵∠BAC=180-(∠B+∠ACB)
∴∠1=90-(∠B+∠ACB)/2
∴∠ADM=∠1+∠B=90-(∠ACB-∠B)/2
∵EF⊥AD
∴∠M+∠ADM=90
∴∠M=90-∠ADM=(∠ACB-∠B)/2
∴∠M=(∠ACB-∠B)/2
证明:
∵∠BAC=∠1+∠2,∠1=∠2
∴∠1=∠BAC/2
∵∠BAC=180-(∠B+∠ACB)
∴∠1=90-(∠B+∠ACB)/2
∴∠ADM=∠1+∠B=90-(∠ACB-∠B)/2
∵EF⊥AD
∴∠M+∠ADM=90
∴∠M=90-∠ADM=(∠ACB-∠B)/2
∴∠M=(∠ACB-∠B)/2