令p=y'
则y"=pdp/dy
代入原方程:
pdp/dy+2p/(1-y)=0
dp=2dy/(y-1)
积分:p=2ln|y-1|+C1
即dy/dx=2ln|y-1|+C1
得dy/(2ln|y-1|+C1)=dx
再积分:∫dy/(2ln|y-1|+C1)=x+C2
令p=y'
则y"=pdp/dy
代入原方程:
pdp/dy+2p/(1-y)=0
dp=2dy/(y-1)
积分:p=2ln|y-1|+C1
即dy/dx=2ln|y-1|+C1
得dy/(2ln|y-1|+C1)=dx
再积分:∫dy/(2ln|y-1|+C1)=x+C2