过椭圆x²/9+y²/4=1上任意一点P向圆x²+y²=1引切线PA、PB,切点

2个回答

  • 根据已知得,PA⊥AO,AM⊥PO,

    ∴|MO|*|PO|=|OA|²=1.

    设P(X0,Y0),M(x,y),

    则√(x²+y²()*√(X0²+Y0²)=1

    即x²+y²=1/(X0²+Y0²),

    ∵P在椭圆(x²/9)+(y²/4)=1上,

    ∴(x0²/9)+(y0²/4)=1

    ∴x²+y²=[(X0²/9)+(Y0²/4)]/(X0²+Y0²)(把“1”换成“(x0²/9)+(y0²/4)”得到的)

    ∵O、M、P三点共线,

    ∴y/x=Y0/X0

    ∴变形为x²+y²=[(x²/9)+(y²/4)]/(x²+y²),

    当P(0,±2),M(0,±1/2)时,y/x没有意义,但是带入也满足

    ∴最终得M的轨迹方程为(x²+y²)²=x²/9+y²/4

    最后一步变形看不懂的话,我把它写出来:

    是根据y/x=Y0/X0得到的

    [(X0²/9)+(Y0²/4)]/(X0²+Y0²)

    =X0²/[9(X0²+Y0²)]+Y0²/[4(X0²+Y0²)]

    =X0²/[9(X0²+Y0²)]+Y0²/[4(X0²+Y0²)]

    = 1/[9(1 + Y0²/X0²)] + 1/[4(X0²/Y0² + 1)](上下同时约去分子)

    = 1/[9(1 + y²/x²)] + 1/[4(x²/y² + 1)]

    = x²/[9(x²+y²)]+y²/[4(x²+y²)]

    = (4x²+9y²)/[36(x²+y²)]

    ∴x²+y²=(4x²+9y²)/[36(x²+y²)]

    36(x²+y²)²=(4x²+9y²)

    (x²+y²)²=x²/9+y²/4