解题思路:(1)根据直角三角形的性质证得∠DAQ=∠PDC,然后根据ASA即可证得△ADQ≌△CDP,即可证得;
(2)首先证明△OCP≌△ODQ,即可得到OP=OQ,且∠DOQ=∠POC,然后根据正方形的对角线互相垂直即可证得∠QOP=90°,从而证出垂直.
(1)证明:∵正方形ABCD中,∠ADC=90°,即∠ADP+∠PDC=90°,
又∵DP⊥AQ,
∴∠DAQ+∠ADP=90°,
∴∠DAQ=∠PDC,
∵在△ADQ和△CDP中,
∠DAQ=∠PDC
AD=DC
∠ADQ=∠DCP,
∴△ADQ≌△CDP(ASA),
∴DQ=CP;
(2)OP=OQ且OP⊥OQ.
证明:∵四边形ABCD是正方形,
∴∠ODQ=∠OCP,
∵在△OCP和△ODQ中,
OD=OP
∠ODQ=∠OCP
DQ=CP
∴△OCP≌△ODQ(SAS),
∴OP=OQ,且∠DOQ=∠POC
又∵∠DOC=90°,
∴∠QOP=90°,
则OP⊥OQ.
点评:
本题考点: 正方形的性质;全等三角形的判定与性质.
考点点评: 本题考查了正方形的性质以及全等三角形的判定与性质,正确证明△OCP≌△ODQ是关键.