a*sin(π/2-A)+b*cos(π-B)=0
a*cosA + b*(-cosB)=0
cosA/cosB=b/a
由正弦定理有:
b/a=sinB/sinA
cosA/cosB=sinB/sinA
sinA*cosA=sinB*cosB
sin2A=sin2B
∵A∈(0,π),B∈(0,π)
∴有:2A=2B或2A+2B=π
A=B或A+B=π/2
∴△ABC是等腰三角形或者直角三角形~~
a*sin(π/2-A)+b*cos(π-B)=0
a*cosA + b*(-cosB)=0
cosA/cosB=b/a
由正弦定理有:
b/a=sinB/sinA
cosA/cosB=sinB/sinA
sinA*cosA=sinB*cosB
sin2A=sin2B
∵A∈(0,π),B∈(0,π)
∴有:2A=2B或2A+2B=π
A=B或A+B=π/2
∴△ABC是等腰三角形或者直角三角形~~