解法一:利用相似求解
AC=3,BC=4,Rt△ABC中,AB=5
显然:△A1CA∽△CBA,
得A1C/CB=CA/BA,得A1C=(CA/BA)*CB=3×(4/5)
显然:△C1A1C∽△A1CA,
得C1A1/A1C=A1C/CA,得C1A1=(A1C)^2/CA=3×(4/5)^2
显然:△A2C1A1∽△C1A1C,
得A2C1/C1A1=C1A1/A1C,得A2C1=(C1A1)^2/A1C=3×(4/5)^3
显然:△C2A2C1∽△A2C1A1,
得C2A2/A2C1=A2C1/A1C1,得C2A2=(A2C1)^2/C1A1=3×(4/5)^4
同理可得:
△C3A3C2∽△A3C2A2,得C3A3=3×(4/5)^6
△C4A4C3∽△A4C3A3,得C4A4=3×(4/5)^8
△C5A5C4∽△A5C4A4,得C5A5=3×(4/5)^10
所求C5A5=3×4^10/5^10=3145728/9765625=0.3221225472
解法二:利用三角函数求解
令∠B=α,得cosα=BC/AB=4/5
所以A1C=ACcosα=3×(4/5)
A1C1=A1Ccosα=3×(4/5)^2
C1A2=A1C1cosα=3×(4/5)^3
A2C2=C1A2cosα=3×(4/5)^4
.
A5C5=3×(4/5)^10