[√(x^2+1)+2x]^2/(3x^2+1)=[|x|√(1+1/x^2)+2x]^2/x^2(3+1/x^2)=x^2[√(1+1/x^2)+2]^2/x^2(3+1/x^2) 注意这里|x|^2=x^2,所以x可以提出来.=[√(1+1/x^2)+2]^2/(3+1/x^2)所以 limx->∞{[√(1+1/x^2)+2]^2/(3+1/x^2)}=(√1+2)^2/3=9/3=3
lim (√(x^2+1)+2x)^2/(3x^2+1) x→+∞
1个回答
相关问题
-
lim x→∞ (1-x^2)/(2x^2-3) =lim x→∞ (1/x²-1)/(2-3/x^2) =-
-
高数【函数极限】lim (1+1/x)=?x→∞lim(1-3x)∧1/(2x)=?x→0lim[(2x+3)/(2x+
-
数学极限lim(x→0)((x^3)/(3*x^2-1)) lim(x→+无穷)(√x(x+2)-√(x^2-x+1))
-
lim(2x-3/2x+1)^x+1
-
lim(2x+3/2x+1)^(x+1)
-
lim(x→0)2+[(x^3-2x^2+1)/(x-1)]
-
1.lim(x->4)(2x+1)^1/2-3/x^2-3x-4
-
lim(x^3+4x^2+1)/(3x^2+2x^)=
-
lim[ln(1+x)+ln(1-x)]/(ex^2-1) lim[ 2e^(2x)-e^(x)-3x-1]/[e^(x
-
求(1)lim2n^2-n+1/n2^+3n (2)limx^2+2x/x^2+4x+1 (3)lim(1/1+x-3/