解题思路:根据p2-4q≥0,得出方程有两个实数根,再根据已知条件得出两根之积>零、两根之和<零时,由此得到关于p,q的不等式,然后确定它们的取值范围即可.
∵p2-4q≥0,
∴方程有两个实数根,
设x1,x2是该方程的两个负数根,
则有x1+x2<0,x1x2>0,
∵x1+x2=-p,x1x2=q
∴-p<0,q>0
∴p>0,q>0.
故选A.
点评:
本题考点: 根与系数的关系;根的判别式.
考点点评: 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系与根的判别式,若方程的两根为x1,x2,则x1+x2=-[b/a],x1•x2=[c/a].