若实数不连续,则存在a、b是相邻的两个实数,则(a+b)/2也为实数,但它介于a、b之间,所以a、b不相邻.故实数连续
回答者:hyl510 - 见习魔法师 二级 4-26 15:59
这证明对吗?
若有理数不连续,则存在a、b是相邻的两个有理数,则(a+b)/2也为有理数,但它介于a、b之间,所以a、b不相邻.故有理数连续.
那为什么说有理数不连续?
--------------------------------------------------------
实数系的基本定理——实数系的连续性,有多种表达方式:Dedkind 切割定理,确界存在定理,单调有界数列收敛定理,闭区间套定理,Bolzano-Weierstrass 定理,Cauchy 收敛原理和Cantor定理.这些定理是等价的,其中每一个都可以作为极限论的出发点,建立起整个极限理论.
确界定理:在实数系R内,非空的有上(下)界的数集必有上(下)确界存在.
有理数集合0