解题思路:先根据AB∥CD求出∠BAC+∠ACD的度数,再由CD∥EF求出∠CEF+∠ECD的度数,把两式相加即可得出答案.
∵AB∥CD,
∴∠BAC+∠ACD=180°…①,
∵CD∥EF,
∴∠CEF+∠ECD=180°…②,
①+②得,
∠BAC+∠ACD+∠CEF+∠ECD=180°+180°=360°,
即∠BAC+∠ACE+∠CEF=360°.
点评:
本题考点: 平行线的性质.
考点点评: 此题比较简单,考查的是平行线的性质,即两直线平行,同旁内角互补.
解题思路:先根据AB∥CD求出∠BAC+∠ACD的度数,再由CD∥EF求出∠CEF+∠ECD的度数,把两式相加即可得出答案.
∵AB∥CD,
∴∠BAC+∠ACD=180°…①,
∵CD∥EF,
∴∠CEF+∠ECD=180°…②,
①+②得,
∠BAC+∠ACD+∠CEF+∠ECD=180°+180°=360°,
即∠BAC+∠ACE+∠CEF=360°.
点评:
本题考点: 平行线的性质.
考点点评: 此题比较简单,考查的是平行线的性质,即两直线平行,同旁内角互补.