1,f(x)=-√3sin^2x+sinxcosx
=√3/2*(cos2x-1)+1/2sin2x
=√3/2cos2x+1/2sin2x-√3/2
=cos(2x-π/6)-√3/2,
最小正周期 T=2π/2=π,
2,x∈【0,π/2】,
则2x-π/6∈【-π/6,5π/6】
当2x-π/6=0时,f(x)取最大值1-√3/2,
当2x-π/6=5π/6时,f(x)取最小值-√3.
所以值域为【-√3,1-√3/2】
1,f(x)=-√3sin^2x+sinxcosx
=√3/2*(cos2x-1)+1/2sin2x
=√3/2cos2x+1/2sin2x-√3/2
=cos(2x-π/6)-√3/2,
最小正周期 T=2π/2=π,
2,x∈【0,π/2】,
则2x-π/6∈【-π/6,5π/6】
当2x-π/6=0时,f(x)取最大值1-√3/2,
当2x-π/6=5π/6时,f(x)取最小值-√3.
所以值域为【-√3,1-√3/2】