(Ⅰ)由题意得a2=3,a5=9
公差d=
a5-a2
5-2=2 (2分)
所以an=a2+(n-2)d=2n-1 (4分)
由Tn=1-
1
2bn得n=1时b1=
2
3
n≥2时bn=Tn-Tn-1=
1
2bn-1-
1
2bn(6分)
得bn=
1
3bn-1所以bn=
2
3n(8分)
(Ⅱ)由(Ⅰ)得cn=
3n•bn
anan+1=
2
(2n-1)(2n+1)=
1
2n-1-
1
2n+1
∴sn=c1+c2+c3++cn=(
1
1-
1
3)+(
1
3-
1
5)+(
1
5-
1
7)+…+(
1
2n-1-
1
2n+1)
=1-
1
2n+1<1(12分)
∴Sn<1