方程两边对x求导
e^y+xe^y*y'+y'=0
所以y'=(-e^y)/(xe^y+1)=-1/[x+e^(-y)]
再次对方程两边的x求导
2e^y*y'+xe^y*(y')^2+xe^y*y''+y''=0
y''=-y'*(xy'+2)/[x+e^(-y)]
=(xy'+2)/[x+e^(-y)]^2
=[x+2e^(-y)]/[x+e^(-y)]
=(xe^y+2)/(xe^y+1)
=1+1/(xe^y+1)
=1+1/(2-y)
即d^2y/dx^2=1+1/(2-y)
方程两边对x求导
e^y+xe^y*y'+y'=0
所以y'=(-e^y)/(xe^y+1)=-1/[x+e^(-y)]
再次对方程两边的x求导
2e^y*y'+xe^y*(y')^2+xe^y*y''+y''=0
y''=-y'*(xy'+2)/[x+e^(-y)]
=(xy'+2)/[x+e^(-y)]^2
=[x+2e^(-y)]/[x+e^(-y)]
=(xe^y+2)/(xe^y+1)
=1+1/(xe^y+1)
=1+1/(2-y)
即d^2y/dx^2=1+1/(2-y)