f(x)=ex+1/e^x.
对所有x≦0都有f(x)≥ax+1,①
x=0时①成立,
x=(ex+1/e^x-1)/x,记为g(x),
g'(x)=[x(e-1/e^x)-ex-1/e^x+1]/x^2
=[1-(x+1)/e^x]/x^2
=(e^x-x-1)/(x^2*e^x),
设h(x)=e^x-x-1,h'(x)=e^x-1h(0)=0,
所以g'(x)>0,g(x)是增函数,
g(x)=e-1,为所求.
f(x)=ex+1/e^x.
对所有x≦0都有f(x)≥ax+1,①
x=0时①成立,
x=(ex+1/e^x-1)/x,记为g(x),
g'(x)=[x(e-1/e^x)-ex-1/e^x+1]/x^2
=[1-(x+1)/e^x]/x^2
=(e^x-x-1)/(x^2*e^x),
设h(x)=e^x-x-1,h'(x)=e^x-1h(0)=0,
所以g'(x)>0,g(x)是增函数,
g(x)=e-1,为所求.