设数列{an}的前n项和为sn,满足2sn=a(n+1)-2^(n+1)+1,n属于n*.且a1,a2+5,a3成等差数
1个回答
令A(n)=an+2^n
上面就是A(n+1)=3 A(n)
数列A(n)是等比数列
而A(1)=a1+2^1=a1+2=3
所以A(n)=A(1)*3^(n-1)=3^n
也就是an+2^n=3^n
相关问题
设数列{an}的前n项和为Sn,满足2Sn=an+1 -2^(n+1) + 1 ,n属于N*,且a1、a2 +5、a3
高中数列难题.设数列{an}的前n项和为sn,满足2sn=a(n+1)-2^(n+1)+1,n属于n*.且a1,a2+5
设数列{an}的前n项和为Sn满足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
设数列{an}的前n项和为Sn满足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(2012•广东)设数列{an}的前n项和为Sn,满足2Sn=an+1−2n+1+1,n∈N*,且a1,a2+5,a3成
数列{an}满足a1=1且an=2a(n-1)+2^n(n≮2且n∈N*) 设前N项和为Sn,求证Sn/2^n>2n-3
设数列{an}的前n项和为Sn,且满足an+1=2Sn+2(n∈N﹢),a1=2
设数列an的前n项和为Sn,满足2Sn=an-2∧n+1 +1 ,且a1,a2+5,a3成等差
数列{an}的前n项和Sn,满足2Sn=an+1-2的n+1(n∈N),且a1,a2+5,a3成等差数列
设数列{an}满足a1=t,a2=t^2,前n项和为Sn,且Sn+2-(t+1)Sn+1+tSn=0(n属于N*)