(a+b+c)^9展开式中,a^2·b^3·c^4的系数是多少,为什么组合出来就是它的系数?

1个回答

  • 引理:(a1+a2+...+ak)^n的展开式中a1^n1*a2^n2*...*ak^nk项(n1+n2+...+nk=n)的系数是n!/(n1!*n2!*...*nk!).

    证明:对k用归纳法:

    k=1时显然.

    假设对k成立,要证对k+1成立.注意到

    (a1+a2+...+a{k-1}+ak+a{k+1})^n=(a1+a2+...+a{k-1}+(ak+a{k+1}))^n.

    把ak+a{k+1}看成一项,则由归纳假设知展开式中a1^n1*a2^n2*...*a{k-1}^n{k-1}*(ak+a{k+1})^nk项(n1+n2+...+nk=n)的系数是n!/(n1!*n2!*...*n{k-1}!*nk!).

    再由二项式定理,(ak+a{k+1})^nk展开式中ak^mk*a{k+1}^m{k+1}项(mk+m{k+1}=nk)的系数是(nk取mk)=nk!/(mk!*m{k+1}!).

    所以(a1+a2+...+a{k-1}+ak+a{k+1})^n的展开式中a1^n1*a2^n2*...*a{k-1}^n{k-1}*ak^mk*a{k+1}^m{k+1}项(n1+n2+...+n{k-1}+mk+m{k+1}=n)的系数是

    [n!/(n1!*n2!*...*n{k-1}!*nk!)]*[nk!/(mk!*m{k+1}!)]

    =n!/(n1!*n2!*...*n{k-1}!*mk!*m{k+1}!).

    证毕.

    所以所求系数=9!/(2!*3!*4!)=1260