sinα^2sinβ^2+cosα^2cosβ^2-1/2cos2αcos2β
=(1-cosα^2)(1-cosβ^2)+cosα^2cosβ^2-1/2*(2cos^2α-1)(2cos^2β-1)
=1-cosα^2-cosβ^2+2cosα^2cosβ^2-1/2*(4cos^2α*cos^2β-2cos^2α-2cos^2β+1)
=1-cosα^2-cosβ^2+2cosα^2cosβ^2-2cos^2α*cos^2β+cos^2α+cos^2β-1/2
=1-1/2
=1/2
sinα^2sinβ^2+cosα^2cosβ^2-1/2cos2αcos2β
=(1-cosα^2)(1-cosβ^2)+cosα^2cosβ^2-1/2*(2cos^2α-1)(2cos^2β-1)
=1-cosα^2-cosβ^2+2cosα^2cosβ^2-1/2*(4cos^2α*cos^2β-2cos^2α-2cos^2β+1)
=1-cosα^2-cosβ^2+2cosα^2cosβ^2-2cos^2α*cos^2β+cos^2α+cos^2β-1/2
=1-1/2
=1/2