求曲线r=3cosx,r=1+cosx所围平面图形公共部分的面积

1个回答

  • 这里的θ为x哦

    { r = 3cosθ

    { r = 1 + cosθ

    3cosθ = 1 + cosθ

    cosθ = 1/2

    θ = π/3 或 2π - π/3 = 5π/3

    交点为(3/2,π/3)和(3/2,5π/3)

    ∴阴影面积

    = 2[∫(0→π/3) (1/2)(3cosθ)² dθ + ∫(π/3→π/2) (1/2)(1 + cosθ)² dθ]

    = (9/2)∫(0→π/3) (1 + cos2θ) dθ + ∫(π/3→π/2) (1 + 2cosθ + cos²θ) dθ

    = (9/2)[θ + sinθcosθ] |(0→π/3) + [θ + 2sinθ + (1/2)(θ + sinθcosθ)] |(π/3→π/2)

    = (9/2)[π/3 + (√3/2)(1/2)] + [π/2 + 2 + (1/2)(π/2)] - [π/3 + √3 + (1/2)(π/3 + (√3/2)(1/2))]

    = 2 + 7π/4

    希望对你有所帮助