令sinθ+cosθ=t
则1+2sinθcosθ=t²
sin2θ=t²-1
sin2θ+2√2(sinθ+cosθ)+4
=t²-1+2√2t+4
=t²+2√2t+3
=(t+√2)²+1
由于t=√2sin(θ+π/4)∈[-√2,√2]
所以当t=-√2时,最小值为1
当t=√2时,最大值为9
令sinθ+cosθ=t
则1+2sinθcosθ=t²
sin2θ=t²-1
sin2θ+2√2(sinθ+cosθ)+4
=t²-1+2√2t+4
=t²+2√2t+3
=(t+√2)²+1
由于t=√2sin(θ+π/4)∈[-√2,√2]
所以当t=-√2时,最小值为1
当t=√2时,最大值为9