设an的前n项之和为Sn,bn的前n项之和为Tn
那么Sn/Tn=((a1+an)*n/2)/((b1+bn)*n/2)
=(a1+an)/(b1+bn)=7n+1/4n+27
然后[a5/(b3+b11)]+[a9/(b6+b8)]=[a5/(b3+b11)]+[a9/(b3+b11)] 等差数列性质
=(a5+a9)/(b3+b11)
=(a1+a13)/(b1+b13)
因为(a1+an)/(b1+bn)=7n+1/4n+27
所以将n=13带入就可得到答案 92/79
设an的前n项之和为Sn,bn的前n项之和为Tn
那么Sn/Tn=((a1+an)*n/2)/((b1+bn)*n/2)
=(a1+an)/(b1+bn)=7n+1/4n+27
然后[a5/(b3+b11)]+[a9/(b6+b8)]=[a5/(b3+b11)]+[a9/(b3+b11)] 等差数列性质
=(a5+a9)/(b3+b11)
=(a1+a13)/(b1+b13)
因为(a1+an)/(b1+bn)=7n+1/4n+27
所以将n=13带入就可得到答案 92/79