(1)当a=-8时,f(x)=2lnx-
8x
x+1 ,x>0,
则 f ′ (x)=
2
x -
8
(x+1 ) 2 =
2(x-1 ) 2
x(x+1 ) 2 ≥0,
∴f(x)在定义域上单调递增.
(2)证明:∵ f ′ (x)=
2
x +
a
(x+1 ) 2
=
2 x 2 +(4+a ) 2 +2
x(x+1 ) 2 ,
∵f(x)在定义域上有两个极值点x 1,x 2(x 1≠x 2),
∴f′(x)=0有两个不相等的正实数根x 1,x 2,
则
x 1 + x 2 =-
4+a
2 >0
x 1 x 2 =1>0
△=(4+a ) 2 -16>0 ,
而f(x 1)+f(x 2)=2lnx 1+
a x 1
x 1 +1 +2lnx 2+
a x 2
x 2 +1
= 2ln( x 1 x 2 )+a(
x 1
x 1 +1 +
x 2
x 2 +1 )
=2ln(x 1x 2)+a•
2 x 1 x 2 + x 1 + x 2
x 1 x 2 + x 1 + x 2 +1 =a,
∵
f(x)-2lnx
x (x+1)=a ,
∴ f( x 1 )+f( x 2 )≥
f(x)+2
x -2 等价于
f(x)-2lnx
x (x+1)≥
f(x)+2
x -2 =
f(x)-2(x-1)
x ,
也就是要证明:对任意x>0,有lnx≤x-1,
令g(x)=lnx-x+1,(x>0),
由于g(1)=0,并且 g ′ (x)=
1
x -1 ,
当x>1时,g′(x)<0,则g(x)在(1,+∞)上为减函数;
当0<x<1时,g′(x)>0,则g(x)在(0,1)上为增函数,
∴g(x)在(0,+∞)上有最大值g(1)=0,即g(x)≤0,
故 f( x 1 )+f( x 2 )≥
f(x)+2
x -2 .