已知 f(x)=2lnx+ ax x+1 (x>0) .

1个回答

  • (1)当a=-8时,f(x)=2lnx-

    8x

    x+1 ,x>0,

    则 f ′ (x)=

    2

    x -

    8

    (x+1 ) 2 =

    2(x-1 ) 2

    x(x+1 ) 2 ≥0,

    ∴f(x)在定义域上单调递增.

    (2)证明:∵ f ′ (x)=

    2

    x +

    a

    (x+1 ) 2

    =

    2 x 2 +(4+a ) 2 +2

    x(x+1 ) 2 ,

    ∵f(x)在定义域上有两个极值点x 1,x 2(x 1≠x 2),

    ∴f′(x)=0有两个不相等的正实数根x 1,x 2

    x 1 + x 2 =-

    4+a

    2 >0

    x 1 x 2 =1>0

    △=(4+a ) 2 -16>0 ,

    而f(x 1)+f(x 2)=2lnx 1+

    a x 1

    x 1 +1 +2lnx 2+

    a x 2

    x 2 +1

    = 2ln( x 1 x 2 )+a(

    x 1

    x 1 +1 +

    x 2

    x 2 +1 )

    =2ln(x 1x 2)+a•

    2 x 1 x 2 + x 1 + x 2

    x 1 x 2 + x 1 + x 2 +1 =a,

    f(x)-2lnx

    x (x+1)=a ,

    ∴ f( x 1 )+f( x 2 )≥

    f(x)+2

    x -2 等价于

    f(x)-2lnx

    x (x+1)≥

    f(x)+2

    x -2 =

    f(x)-2(x-1)

    x ,

    也就是要证明:对任意x>0,有lnx≤x-1,

    令g(x)=lnx-x+1,(x>0),

    由于g(1)=0,并且 g ′ (x)=

    1

    x -1 ,

    当x>1时,g′(x)<0,则g(x)在(1,+∞)上为减函数;

    当0<x<1时,g′(x)>0,则g(x)在(0,1)上为增函数,

    ∴g(x)在(0,+∞)上有最大值g(1)=0,即g(x)≤0,

    故 f( x 1 )+f( x 2 )≥

    f(x)+2

    x -2 .