设x=(x1,x2,x3)^T 与 A1正交.
则 x1+2x2+3x3 = 0
得基础解系 b1 = (-2,1,0)^T,b2=(-3,0,1)^T
将 b1,b2 正交化:
c1 = b1
c2 = b2 - (6/5)b1 = (1/5)(-3,-6,5)^T
则 A2 = c1 = (-2,1,0)^T
A3 = (3,6,-5)^T
即为所求.
设x=(x1,x2,x3)^T 与 A1正交.
则 x1+2x2+3x3 = 0
得基础解系 b1 = (-2,1,0)^T,b2=(-3,0,1)^T
将 b1,b2 正交化:
c1 = b1
c2 = b2 - (6/5)b1 = (1/5)(-3,-6,5)^T
则 A2 = c1 = (-2,1,0)^T
A3 = (3,6,-5)^T
即为所求.