(1)∵DE⊥AC,∠C=90°
∴DE∥BC
又∵D为AB中点
∴DE=1/2BC
同理,∵∠EDF=90°
∴DF∥AC
又∵D为AB中点
∴DF=1/2AC
S△DEF+S△CEF = SEDFC = DE·DF = 1/2BC·1/2AC = 1/2S△ABC
(2)图①
过D作DM⊥AC,DN⊥BC
DM=1/2BC,DN=1/2AC
∵AC=BC
∴DM=DN
∠MDE+∠EDN=90°,∠NDF+∠EDN=90°
∴∠MDE=∠NDF
△DME≌△DNF(∠MDE=∠NDF,DM=DN,∠DME=∠DNF)
S△EDF+S△CEF=SEDFC
=SMDNC-S△MDE+S△NDF
=SMDNC
=1/2△ABC
图③ S△DEF = 1/2S△ABC+S△CEF
若要证明的话:
连结DC,DE交CF于P
DC=DB,∠CDE=∠FDB,∠DCE=∠DBF => △DCE≌△DBF
S△DEF=S△PDB+S△EPF+S△DBF
=S△PDB+S△EPF+S△DCE
=S△CDB+S△CEF
=1/2S△ABC+S△CEF