判断函数的奇偶性并不难.
第一种方法,也是用的最多的方法:你可以根据函数奇偶性的定义来判断.就拿e^x这个函数来说.设f(x)=e^x,那么f(-x)=e^(-x)=1/(e^x) .显然f(x)既不等于f(-x),也不等于-f(-x),所以该函数式非奇非偶函数.
第二种方法,你可以根据e^x的图形来判断,画出图,可以见到该函数是定义域为R,值域为(0,+∞)的函数,既没有关于y轴对称(即不是偶函数),也没有关于原点对称(即不是奇函数).所以也可以判断该函数为非奇非偶函数.
至于例子嘛,其实不需要,你可以用把上面的两种方法运用在以后的习题中,慢慢熟练就行了.
望采纳,谢谢O(∩_∩)O谢谢!