e^x(1+Bx+Cx^2)-1=Ax+ο(x^2),
e^x(1+Bx+Cx^2)=1+Ax+ο(x^2),
x->0时
[e^x(1+Bx+Cx^2)-1]/x=A+ο(x),
x->0时对上式用罗必塔法则求极限
limx->0[e^x(1+Bx+Cx^2)+e^x(B+2Cx)]=A
limx->0[e^x(B+1)+e^x(Bx+Cx^2+2Cx)]=A
所以B+1=A,C为任何数
e^x(1+Bx+Cx^2)-1=Ax+ο(x^2),
e^x(1+Bx+Cx^2)=1+Ax+ο(x^2),
x->0时
[e^x(1+Bx+Cx^2)-1]/x=A+ο(x),
x->0时对上式用罗必塔法则求极限
limx->0[e^x(1+Bx+Cx^2)+e^x(B+2Cx)]=A
limx->0[e^x(B+1)+e^x(Bx+Cx^2+2Cx)]=A
所以B+1=A,C为任何数