首先那个截面必须是一个你很熟悉的平面图形,面积容易计算.
截面的写法其实很简单:就是侧面的曲面方程,只不过做截面时z当作常数看待.
因此截面方程为:x²+y²/4=1-z,这是一个椭圆,a=√(1-z),b=2√(1-z)
椭圆面积为:πab=2π(1-z)
因此原式=3∫[0→1] z dz∫∫dxdy
=6π∫[0→1] z(1-z) dz
=6π[(1/2)z²-(1/3)z³] |[0→1]
=π
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
首先那个截面必须是一个你很熟悉的平面图形,面积容易计算.
截面的写法其实很简单:就是侧面的曲面方程,只不过做截面时z当作常数看待.
因此截面方程为:x²+y²/4=1-z,这是一个椭圆,a=√(1-z),b=2√(1-z)
椭圆面积为:πab=2π(1-z)
因此原式=3∫[0→1] z dz∫∫dxdy
=6π∫[0→1] z(1-z) dz
=6π[(1/2)z²-(1/3)z³] |[0→1]
=π
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.