向量a+kb与a-kb互相垂直时,有
0 = (a+kb)*(a-kb) = a*a + kb*a - ka*b - k^2b*b = |a|^2 - k^2|b|^2
= 3^2 - k^2*4^2,
k^2 = 3^2/4^2,
k = 3/4
或
k = -3/4
向量a+kb与a-kb互相垂直时,有
0 = (a+kb)*(a-kb) = a*a + kb*a - ka*b - k^2b*b = |a|^2 - k^2|b|^2
= 3^2 - k^2*4^2,
k^2 = 3^2/4^2,
k = 3/4
或
k = -3/4