由题意f(an)=(2an+1/an)=an+2a(n+1),可得(an+1/an)=2a(n+1)
b(n+1)=[a(n+1)-1]/[a(n+1)+1],将a(n+1)=0.5*(an+1/an)代入,
得b(n+1)=(an-1)^2/(an+1)^2=(bn)^2,故bn数列后一项为前一项平方,又b1=1/3,所以bn=(1/3)^〔2^(n-1)〕 ,证毕.
由题意f(an)=(2an+1/an)=an+2a(n+1),可得(an+1/an)=2a(n+1)
b(n+1)=[a(n+1)-1]/[a(n+1)+1],将a(n+1)=0.5*(an+1/an)代入,
得b(n+1)=(an-1)^2/(an+1)^2=(bn)^2,故bn数列后一项为前一项平方,又b1=1/3,所以bn=(1/3)^〔2^(n-1)〕 ,证毕.