命题不正确的是D
如果n阶方阵A是可逆矩阵,则下列命题不正确的是 A.detA≠0 B.R(A)=n C.非齐次线性方程组Ax=b有唯一解
1个回答
相关问题
-
假如A是n阶矩阵,b是n维非零向量,r1,r2非齐次线性方程组AX=b的解,m是齐次线性方程AX=0的解.
-
A是n阶可逆方阵则齐次线性方程组Ax=0只有0解 对错
-
线性代数:设A为n阶方阵,若齐次线性方程组Ax=0只有零解则非齐次线性方程组Ax=b解的个数是?
-
线性方程组解的问题对m×n型非齐次线性方程组AX=b,设r(A)=r,则下列命题正确的是()A.若r=m,则方程组有解B
-
设矩阵A(m*n)的秩为n则非齐次线性方程组Ax=b为什么一定有唯一解?
-
设矩阵A(m*n)的秩r(A)=n,则非齐次线性方程组Ax=b()
-
设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=_________.
-
设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=?求教~
-
设非齐次线性方程组Ax=b中,系数矩阵A为m*n矩阵,且r(A)=r,则下列结论中正确的是
-
设A是m*n矩阵,秩A=r,则非齐次线性方程组AX=b最多有n–r个线性无关解.这个命题是对的吗?