400道因式分解和因式方程 要有题及过程

2个回答

  • 因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)

    3.因式分解xy+6-2x-3y=(x-3)(y-2)

    4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2

    5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)

    6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)

    7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2

    8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)

    9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)

    10.因式分解a2-a-b2-b=(a+b)(a-b-1)

    11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2

    12.因式分解(a+3)2-6(a+3)=(a+3)(a-3)

    13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)

    abc+ab-4a=a(bc+b-4)

    (2)16x2-81=(4x+9)(4x-9)

    (3)9x2-30x+25=(3x-5)^2

    (4)x2-7x-30=(x-10)(x+3)

    35.因式分解x2-25=(x+5)(x-5)

    36.因式分解x2-20x+100=(x-10)^2

    37.因式分解x2+4x+3=(x+1)(x+3)

    38.因式分解4x2-12x+5=(2x-1)(2x-5)

    39.因式分解下列各式:

    (1)3ax2-6ax=3ax(x-2)

    (2)x(x+2)-x=x(x+1)

    (3)x2-4x-ax+4a=(x-4)(x-a)

    (4)25x2-49=(5x-9)(5x+9)

    (5)36x2-60x+25=(6x-5)^2

    (6)4x2+12x+9=(2x+3)^2

    (7)x2-9x+18=(x-3)(x-6)

    (8)2x2-5x-3=(x-3)(2x+1)

    (9)12x2-50x+8=2(6x-1)(x-4)

    40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)

    41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)

    42.因式分解9x2-66x+121=(3x-11)^2

    43.因式分解8-2x2=2(2+x)(2-x)

    44.因式分解x2-x+14 =整数内无法分解

    45.因式分解9x2-30x+25=(3x-5)^2

    46.因式分解-20x2+9x+20=(-4x+5)(5x+4)

    47.因式分解12x2-29x+15=(4x-3)(3x-5)

    48.因式分解36x2+39x+9=3(3x+1)(4x+3)

    49.因式分解21x2-31x-22=(21x+11)(x-2)

    50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)

    51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)

    52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)

    53.因式分解x(y+2)-x-y-1=(x-1)(y+1)

    54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)

    55.因式分解9x2-66x+121=(3x-11)^2

    56.因式分解8-2x2=2(2-x)(2+x)

    57.因式分解x4-1=(x-1)(x+1)(x^2+1)

    58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)

    59.因式分解4x2-12x+5=(2x-1)(2x-5)

    60.因式分解21x2-31x-22=(21x+11)(x-2)

    61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)

    62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)

    63.因式分解下列各式:

    (1)3x2-6x=3x(x-2)

    (2)49x2-25=(7x+5)(7x-5)

    (3)6x2-13x+5=(2x-1)(3x-5)

    (4)x2+2-3x=(x-1)(x-2)

    (5)12x2-23x-24=(3x-8)(4x+3)

    (6)(x+6)(x-6)-(x-6)=(x-6)(x+5)

    (7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)

    (8)9x2+42x+49=(3x+7)^2 .

    1.若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( )

    A.2 B. 4 C.6 D.8

    2.若9x2−12xy+m是两数和的平方式,那么m的值是( )

    A.2y2 B.4y 2 C.±4y2 D.±16y2

    3.把多项式a4− 2a2b2+b4因式分解的结果为( )

    A.a2(a2−2b2)+b4 B.(a2−b2)2

    C.(a−b)4 D.(a+b)2(a−b)2

    4.把(a+b)2−4(a2−b2)+4(a−b)2分解因式为( )

    A.( 3a−b)2 B.(3b+a)2

    C.(3b−a)2 D.( 3a+b)2

    5.计算:(−)2001+(−)2000的结果为( )

    A.(−)2003 B.−(−)2001

    C. D.−

    6.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( )

    A.M>N B.M≥N C.M≤N D.不能确定

    7.对于任何整数m,多项式( 4m+5)2−9都能( )

    A.被8整除 B.被m整除

    C.被(m−1)整除 D.被(2n−1)整除

    8.将−3x2n−6xn分解因式,结果是( )

    A.−3xn(xn+2) B.−3(x2n+2xn)

    C.−3xn(x2+2) D.3(−x2n−2xn)

    9.下列变形中,是正确的因式分解的是( )

    A. 0.09m2− n2 = ( 0.03m+ )( 0.03m−)

    B.x2−10 = x2−9−1 = (x+3)(x−3)−1

    C.x4−x2 = (x2+x)(x2−x)

    D.(x+a)2−(x−a)2 = 4ax

    10.多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( )

    A.x+y−z B.x−y+z C.y+z−x D.不存在

    11.已知x为任意有理数,则多项式x−1−x2的值( )

    A.一定为负数

    B.不可能为正数

    C.一定为正数

    D.可能为正数或负数或零

    二、解答题:

    分解因式:

    (1)(ab+b)2−(a+b)2

    (2)(a2−x2)2−4ax(x−a)2

    (3)7xn+1−14xn+7xn−1(n为不小于1的整数)

    答案:

    一、选择题:

    1.B 说明:右边进行整式乘法后得16x4−81 = (2x)4−81,所以n应为4,答案为B.

    2.B 说明:因为9x2−12xy+m是两数和的平方式,所以可设9x2−12xy+m = (ax+by)2,则有9x2−12xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = −12,b2y2 = m;得到a = 3,b = −2;或a = −3,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B.

    3.D 说明:先运用完全平方公式,a4− 2a2b2+b4 = (a2−b2)2,再运用两数和的平方公式,两数分别是a2、−b2,则有(a2−b2)2 = (a+b)2(a−b)2,在这里,注意因式分解要分解到不能分解为止;答案为D.

    4.C 说明:(a+b)2−4(a2−b2)+4(a−b)2 = (a+b)2−2(a+b)[2(a−b)]+[2(a−b)]2 = [a+b−2(a−b)]2 = (3b−a)2;所以答案为C.

    5.B 说明:(−)2001+(−)2000 = (−)2000[(−)+1] = ()2000 •= ()2001 = −(−)2001,所以答案为B.

    6.B 说明:因为M−N = x2+y2−2xy = (x−y)2≥0,所以M≥N.

    7.A 说明:( 4m+5)2−9 = ( 4m+5+3)( 4m+5−3) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1).

    8.A

    9.D 说明:选项A,0.09 = 0.32,则 0.09m2− n2 = ( 0.3m+n)( 0.3m−n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2−x)可继续分解为x2(x+1)(x−1);所以答案为D.

    10.A 说明:本题的关键是符号的变化:z−x−y = −(x+y−z),而x−y+z≠y+z−x,同时x−y+z≠−(y+z−x),所以公因式为x+y−z.

    11.B 说明:x−1−x2 = −(1−x+x2) = −(1−x)2≤0,即多项式x−1−x2的值为非正数,正确答案应该是B.

    二、解答题:

    (1) 答案:a(b−1)(ab+2b+a)

    说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) = a(b−1)(ab+2b+a).

    (2) 答案:(x−a)4

    说明:(a2−x2)2−4ax(x−a)2

    = [(a+x)(a−x)]2−4ax(x−a)2

    = (a+x)2(a−x)2−4ax(x−a)2

    = (x−a)2[(a+x)2−4ax]

    = (x−a)2(a2+2ax+x2−4ax)

    = (x−a)2(x−a)2 = (x−a)4.

    (3) 答案:7xn−1(x−1)2

    说明:原式 = 7xn−1 •x2−7xn−1 •2x+7xn−1 = 7xn−1(x2−2x+1) = 7xn−1(x−1)2.

    抱歉,没有那么多,希望对你有帮助